Dual-Intuitionistic Logic and Some Other Logics

Hiroshi Aoyama

1 Introduction

This paper is a sequel to Aoyama(2003) and Aoyama(2004). In this paper, we will
study various proof-theoretic and model-theoretic properties of the dual-intuitionistic
logic DI and some other logics related to it. The logical systems considered in this paper
are all in the form of Gentzen’s sequent calculus. Models to be studied will be algebraic.

For the classical and intuitionistic logics in the form of Gentzen’s sequent calculus,
LK and LJ, we refer the reader to Takeuti(1987).

Definition 1.1 The first-order language for the sequent calculi to be studied in this
paper consists of the following symbols:
1. Predicate constants with n argument-places (n > 0) : pg, pT, ph, - -+
Individual constants: cg,cq,co, -« -
Free variables: ag, a1, a9, -
Bound variables: xq,x1, 22, -
Logical symbols: =, A, V, —,V, 3

AN ol A

Auxiliary symbols: (, ), ,(comma)

Terms consist of individual constants and free variables. Well-formed formulas (wffs)
are defined as usual. When we consider propositional sequent calculi, their language will
be defined as follows:

Definition 1.2 The propositional language in this paper will consist of the following
symbols:

1. Propositional constants: pg, p1,p2,- -

2. Logical symbols: =, A,V, —

3. Auxiliary symbols: (, )

Well-formed formulas (wffs) of propositional calculi will be defined in the usual way.

2 Dual-Intuitionistic Logic DI

Sequents of DI are so restricted that they contain at most one formula in their an-
tecedents.

(1) Axioms : ¢ = ¢

(2) Inference Rules : (I' consists of at most one formula)
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Structural Rules :

WL :

Cut :

=4

p=A

F'=Ap p=A
I'=s AA

Logical Rules :

-L:

AL :

VL :

—L:

VL :

L :

= Ap
—p=A

_p=A
oAy = A

Y= A
pAY=>A

p=A P=A
pViy=A

= A Y= A
o= = AN

p(t) = A
Vaep(r) = A

t is any term

pla) = A
dzp(z) = A
a is a free variable not

WR :

CR:

ER :

-R:

AR :

VR :

—R:

VR :

JdR :

occurring in the lower sequent

I'=s A
I'=Ap

I'= A
I'=Ap

F:>A7§07¢1A

L= A¢,9,A

p=A

=>A,—\g0

I'=A¢p I's AW

F'=ApAY

F'=Ap

= A pVY

= A9

'=sApVvy

o= A

= A, —

I'= A ¢(a)

I'= A, Vzp(z)

a is a free variable not

occurring in the lower sequent

I'= A ot)

I'= A, Jzp(x)
t is any term

Next, we will consider another logic system which is equivalent to DI.



2.1 System DI

The system equivalent to DI is DI’ which is obtained from LK by modifying the four
and 3 L of LK. Thus, there is no restriction on
the number of formulas in the antecedent and succedent of a sequent.

rules of inference - L, — L, - R,
(1) Axioms:@ p=¢
(2) Inference Rules :

Structural Rules :

WL : ﬂ
o, I'=A
CL: @790)]'_‘:>A
o, I'= A
. Do dl=A
Lo, = A
Cut - = Ap o, I=A
e T = A A
Logical Rules :
- L: A
o= A
AL P =A
p A, I'= A
v, ['= A
eANY, = A
V- o, I'=A U, ['= A
eV, I'= A
= A, p Y= A
— L:
=Y =AA
Vee(x),I = A
t is any term not
occurring in I’
3y, P =4
drp(z) = A

a is a free variable not

occurring in the lower sequent

WR :

CR:

ER :

AR:

vV R:

VR:

dR:
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I'=A
'=Ap

I'= A
= Ap

FiA?@awaA
F:>A7¢7()07A

o, I'=A
I'= A -

'=Ap '= A
I'= A pAy

I'=Ap
= A pVy

=AY
F'=ApVy

o= A
= A, —

I'= A p(a)
I'= AVap(r)
a is a free variable not

occurring in the lower sequent

I'= Ajp(t)

I'= A, Jzp(x)
t is any term



The next proposition and remark show some important syntactic properties of DI
(DI').

Proposition 2.1 The following sequents are provable in DI (DI'):

—_

= Vg
P =
P = g
o= =V
p— =P - e
==Y -
(e AY) =~V
V= (e A1)
(V) =AY
e AW VX)= (P AY)V(pAX)
(PAY)V(eAX)= oA VX)
—Vrp(z) = Jz-p(x

© XN G

T
W= o

Jr—p(x) = ~Vaep(x

—
-

)
(2)
—Vz-p(x) = Jrp(x)
(2)

—
ot

—Jzrp(r) = Vr-p(x

Remark 2.1 The following sequents are not always provable in DI (DI'):
1. p= -
2. pA-p =
3. p=¢—yp
4L oA —=9) =9

We will use the next definition throughout the paper.
Definition 2.1 Suppose I' = 1,99, -+ ,,. Then, let

ML:=p1 Apa A~ A, and W :i=p1 Ve V-V,

In the next two propositions, let I' and A be arbitrary finite sequences of formulas.
The first is almost trivial:

Proposition 2.2 DI'-T'= A iff DI' \I'= A iff DI'+ \T' = \W/ A

Then we can show the equivalence of the two systems DI’ and DI, the proof of which

is elementary:

Proposition 2.3 DI'-T' = A iff DIF \T'= A
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3 Algebraic Aspects of the Propositional Part of DI’

In this section, we will study algebraic models of the propositional part of DI’, which
we will write as DI'p.

Definition 3.1 A DI-algebra (A, —,A,V,—,0,1) is an algebra satisfying the following
properties:
1. (A,A,V,0,1) is a distributive lattice with a bottom 0 and a top 1.

2. - satisfies the condition:
aVb=1 «<— —-b<a

3. — satisfies the conditions:
(1) a—b<-aVb

(2) a<bVe = —c<a—b

Proposition 3.1 The operation — of a DI-algebra has the following properties:
1. =0=1, —-1=0
2. aANb=0=b<—qa

aVb=1<—= -a<b

a<b— -b<-a

a<b=aN(bV-a)=a

—(aAb)=-aV -b, —(aVb)<-aA-b

——a < a, —0a=-"a

e A T o

a<b<— -b<a

Proposition 3.2 The operation — of a DI-algebra has the following properties:
1. a—0=-a
2. =(an—-b)<a—b

—a<a—b

—b<a—b

a<b=—=a—b=1

aV(a—b) =1

a—a=1

l—-a<a

© ® N o ok W

aVb=1=—=a—b<bd
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Proposition 3.3 The following three conditions are equivalent to each other in a DI-
algebra:

1. a—b<-aVb
2. avVb<ec=—a—b<c

3. (eVva=1, b<d)=a—-b<cVd

3.1 Algebraic Models of DI'p

Definition 3.2 An algebraic model of DI'p is defined to be M = (M
1. M is a DI-algebra (M

,v), where
VA _>701 1>

2. v is a function from F to M, where F' is the set of all propositional
constants of DI'p.

3. Interpretation of formulas and sequents of DI'p relative to M = (M, v) is

defined as follows:

We write the interpretation of a formula ¢ at v in M = (M, v) as [¢]M.

Formulas :

1. For atomic formulas ¢ : [l = v(p) e M

2. For formulas of the form —1) : [y M = —[y]M

3. For formulas of the form ¥ A x @ [ AX]M = [W]M A []M

4. For formulas of the form ¢ V x : [V X]M = [Y]M v [x]¥
[

5. For formulas of the form ¢ — x :

¥ — X[ = [l — XY

Sequents :
if [l < [w]
[o = ¢ = _
otherwise
1 if M —q
2 [ =l = s
0 otherwise
1 if M_y
3 lp~ 1= el
0 otherwise
4o e, om =1 oM =1t A A = P Ve V[

Definition 3.3 Let M =

[T = A]M

(M, v) be an arbitrary model of DI'p.
1. Asequent I' = A is M-valid, M =T = A in symbol, if

=1 for every v.

2. Asequent I'= A iswalid , =T = A in symbol, if it is M-valid in

every model M.
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3.2 The Soundness and Completeness of DI'p

In this subsection, we will prove the soundness and completeness theorems of DI'p.
The proof of the soundness theorem is routine.
Theorem 3.4 Let I’ and A be arbitrary finite sequences of formulas. Then

FI=A = EET'=A

Before proving the completeness of DI’p, we need to construct the Lindenbaum algebra
of DI'p.

Definition 3.4 Let ¢ and 1 be arbitrary formulas of DI'p.
1. o= &, (Fe=1vand F¢= )
2. |p| == {Y € F|p=1}, where F is the set of all formulas of DI'p
3. F/= = {lel lweF}

def
3. lpl <Y < Fe=v

Proposition 3.5 The following hold of the above definition :
1. The relation < on F/= is well-defined.
2. (F/=,<) is a poset.

3. For each |p|, |¥| € F/=, both inf{|pl|, ||} and sup{|y|, ||} exist and the
former is written as |p| A || and the latter as || V ||

Moreover, we have

lol A Y] =l Ay
lol V[ = [ Vi

4. (F/=,A,V) is a distributive lattice with both a bottom 0 and a top 1 :
for any formula o,

0=[~(p—¢)| and 1=p— ¢

5. For each |p| € F/=, —|p| exists and is equal to |—p|.
6. For each |p|and [¢| € F/=, |p| — |[¢| exists and is equal to |o — 1].

By Proposition 3.5, (F/=,—,A,V,—,0,1) is a DI-algebra, which we will call the
“Lindenbaum algebra” of DI'p. Using the Lindenbaum algebra, we can prove the com-

pleteness theorem for DI'p:

Theorem 3.6 Let I' and A be arbitrary finite sequences of formulas. Then
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Fl=A =FI=A

Proof Set v:= /M\TI, § := W/ A. Then, assuming I/ v = 4, we show [~ v = §. Using
the Lindenbaum algebra of DI'p, we define a model (F/=,v) of DI'p as follows: for
each atomic formula ¢, set

v(p) == ||
Then we can prove, by an easy induction,

Lemma : For each formula ¢ of DI'p, [[(,0]]5E = |p].

Since v =9 <= |vy| <[], we have |y| £]d]. So, by the lemma above,

W= 20105, ie, Iy= 0105 #1

Therefore, [~ v = 6. O

4 Formal Logic System LB
4.1 System LB

Sequent calculus LB is obtained from LK by restricting each sequent of LK so that it
contains at most one formula in its antecedent and succedent. Thus LB is the following
system:

(1) Axioms:@ p=¢
(2) Inference Rules : (I" and A contain at most one wif)

Structural Rules

= A I'=
WL : WR: ———
p=A =y
T A
Cut : —~ ¥ =

'=A
Logical Rules

- L: 7:>S0 -R: 74P:>
’ —\(’0:> ’ :>—\(’0
AL P8 AR: Lze D=9
oA = A ' L= oAy
Y= A
oAy = A
v =8 Yv=A VR: LT ®
) eV =A T T=oVy
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I'=q

I'=seVvy
=9 Yv=A =1
— L: —-R.: -
p—h=A =9 =1
t A r
vp: A=A vR: 4o
Vep(r) = A I' = Vzp(z)
t is any term a is a free variable not
occurring in the lower sequent
JL: 7¢(a):>A JR: 7F:>¢(t)
Jzp(x) = A I'= Jzp(z)
a is a free variable not t is any term

occurring in the lower sequent

Proposition 4.1 The following sequents are provable in LB:
L oo=9oN(eVY), @AN(eVY)=0p

2. p=>0oVipAY),  eV(eAY) =9
eAY=oA(mpVY), eV (e AY)= VY
(@A) V(eAX)= oA ([P VX)

eV WAX)= (Vi) AlpVX)

(@A) V(A1) =

= (pVY)A(pV 1)

eV Vz(z) = V(e Vi(x)) (x does not appear in )

L ® N ot e

Jz(p AY(x)) = o AJxp(x)  (z does not appear in )
Proposition 4.2 If - = ¢, thent ¢ — Y = —p V.

Proposition 4.3 The following rules of inference hold in LB :

Lz =
’ = —\—\(p} il =
g TP e=Y =9 Zp—Y
‘ =y =
=
u, where ¢ is a theorem of LB, i.e., - = ¢
= Y
M A el .t

=X
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4.2 System LB’

We now present a system of sequent calculus which is named LB’. Sequents I' = A
in LB’ has no restriction on the number of formulas in I' and A. It is this system:

(1) Axioms: p=¢
(2) Inference Rules :

Structural Rules

WL : I'=4A WR : I'=4A
o, = A = Ap
o . Lel=A CcR. L= 809
o, = A I'=Ap
g . Levll=A ER. L= A0 A
Ly, 0,1 = A L= A¢,0,A
'=Ap p=A I'=s e o, 1= A
Cutl : Cut2 :
" I = A A b T = A
Logical Rules
B P — ~R: 2T
e = = P
AL, _ol=4 AR: Lze T=v
e AN, I'= A = pAy
v, I'= A
eANY, = A
vV L: p=A4 y=A4 VR: ﬂ
oV = A = ApVvy
=A%
'=sApVvy
= v =A =1
— L —-R.: - -
p—1h=A = o=
Vrzo(x),I = A I' = Vzo(x)
t is any term a is a free variable not
occurring in the lower sequent
JL pla) = A IR I'= A o(t)
dzp(z) = A I'= A, Jzp(z)
a is a free variable not t is any term

occurring in the lower sequent
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This system LB’ is equivalent to LB. To show this, we need a proposition.
Proposition 4.4 For any given sequent I' = A, we have the following :
LB FI'=A < LB'F/N\TI'=\WA
Then we can show the equivalence of LB and LB’:

Theorem 4.5 For any given sequent I' = A, we have the following :

LB N\I'=WA < LB'F/X\TI'=\WA

4.3 LB and Distributive Laws
It is easy to check that the following distributive laws hold in LB:
LoV Ax)= (Vi) A(eVx)
2. (@AY VI(eAX) = @A (Y VX)
For the orther distributive laws, we have the following two propositions.
Proposition 4.6 Let Disty be the sequent of the form “(pVi)A(eVX) = @V (LAX)”.
Then the following holds :
LB+ Dist; Fo AW Vx)= (pAY)V(pAx)
Thus, in LB+ Disty, all of the four distributive laws are provable.

Proof It is enough to prove in LB + Dist; the following four sequents in order:
L ooA@VX)=(@A{@Ve)A[WVX)
2. (pAWVE)IARDVX)=0A RV (pAX)
3. oA VI(eAX) = (@V(eAX) AWV (AX))
4 (eVeAxX)A@VI(eAX) = (@A) V(pAX)

We here check only 4. The rest are easy to prove. Since “(¢V (@ AX))A (Y V(pAYX)) =
((pAX)VE)A((pAX)VY)? is provable in LB, we can get the following proof in LB +Dist,
using Cut:

(V(eAX)) AV (eAX)) = (e AX)VO)A(LAX)IVY) ((PAX)VR)A(PAX) V) = (9 AX)V (pAY)
(eV(eAX)A@V(9AX)) = (PAX)V (9ATD) (eAX)V (pAY) = (pAP)V (PAX)
(@V(eAXDA(DV(PAX)) = (PAY)V(pAX)

d

Proposition 4.7 Let Disty be the sequent of the form “pA (¥ V x) = (pAY)V (pAX)”.
Then the following holds :
LB+ Dists (e V) A(pVX)= eV (¥ AX)
Thus, in LB+ Disto, all of the four distributive laws are provable.
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Proof It is enough to prove in LB+ Dists the following four sequents in order:
L (eVY)A(eVx)=((eVY)Ae) VeV Y)AX)
2. (V) Ap)V((eVY)AX) =V ((eVY)AX)
3. oV((eVY)AX) = eV (e AX)V (¥ AX))
4 oVleAx) V@ AX)= eV ([¥AX)

We here check only 3. “xA(pVY) = (xAp)V(xA)” is a Disty and “(xA@)V (XAY) =
(e Ax) V(¥ Ax)” is provable in LB. Thus, we have “x A (¢ V¥) = (¢ Ax) V (¥ A x)”
by Cut. Since we also have “(¢ V) Ax = x A (¢ V)" in LB, we can get the following
proof in LB + Dists :

(V) AX= XA (V)  xA(pVY)=(pAX)V(PAX)
Y= (V) Ax= (eAX)V (P AX)
o=eV((eAX)V ([P AX)) (V) Ax =V ((pAX)V (P AX))
eV ((eVY)AX) = eV ((eAX)V (P AX))

4.4 The Relation between LB and DI
We now study an important sysntactic relation between LB and DI.
Definition 4.1 We define LB; to be a system obtained from LB by adding the following
sequents as additional axioms:
1. = @V op
2. oo Y=pVY
=YV (P V)
PV o=y
(V)N VX)= eV [ AX)

Va(p Vi(x)) = ¢ VVry(x), where x does not appear in ¢

SO AN

Remark 4.1 We have LB+ = = =@V ==Y and LB F ==Y = =pV —-—1p. Thus,

from 4 in the above definition, we have
LB+4iF-p=¢p—=19% and LB+4F -9 =p—Y

Proposition 4.8 The additional azioms 1-6 in the above definition are all provable in
DI.

The next is an easy proposition :

Proposition 4.9 Let I' be a sequence of at most one formula and A a finite sequence

of formulas. Then
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DIFT = A iff DIFI=\WA
The next theorem shows the equivalence of DI and LB1:

Theorem 4.10 DI = LBy, i.e., DIFT = /A f LBy FT = WA, where I’
consists of at most one formula.

Proof The direction <= is clear from Proposition 4.8 and the fact that LB is a sub-
system of DI. For the other direction, we need to show that all of the inference rules of
DI hold in LB;. We here check the inference rules =L, =R, — L, and — R of DI

= A
1) -L: —=%
—p=A
For this, it is enough to check the rule
=0V
—p =4

where § := \Y/ A. This is obtained in LB, using the additional axiom 3 of Definition
4.1, as follows:

=0V
=(dV )=
0=9 “(dVep)=9
=0V -(dV ) OV-=(0Vey)=9§
=9
@)ﬁR:—i%é;
For this, it is enough to check the rule
_p=0
=iV’

where 6 := \{/ A. This is obtained in LBy, using the additional axiom 1 of Definition
4.1, as follows:

=10 o = g
=0V =6V p
= V- YV =4V -p
=0V -
= A = A
(3) - L: P
po—1P=>AA

For this, it is enough to check the rule

=0V = A
p—=UY=0VA

9
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where 0 := \/ A and A := \/ A. This is obtained in LB, using (1) above and the
additional axiom 2 of Definition 4.1, as follows:

=0V
—p =9 V= A
=0V A Y=90VA
==V V=38V
=Y =35V
= A,
(4 — R: —:;A,@ib”/’
For this, it is enough to check the rule
=0V
=0V (p =)’

where 6 := \{/ A. This is obtained in LB; from Remark 4.1, (1) and (2) above and also
the fact that LB VY Vx=¢oVXxVY:

VY =38V o= =P

p=dV VY=V V(p— ) —p=dVYV(p— 1)
=0VYV-op SVYVop=3VYV(p— )

= 0VYV(p =) SVYPV(p =) =8V (p =) Vi
=0V(p—=YP) VY Y=o
=3V (p— ) SV(p—=Y)=dV(p =) = =V (p — ¢)
=0V(p—Y)V-y V=) Vap =6V (p— )

=0V (p— 1)

4.5 The Relation between LB and LJ

We now study an important syntactic relation between LB and LJ.
Definition 4.2 We define LBs to be a system obtained from LB by adding the following
sequents as additional axioms:
1. o A-p =
2. oA VX) = (P APV (P AX)
3. A=) =9
P A Np) =
ANV Ap) = x) =P =X
drp(z) A = Fz(p(z) A1), where x does not appear in 9

IO o

Proposition 4.11 The additional azioms 1-6 in the above definition are all provable in
LJ.
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The next is a well-known proposition:

Proposition 4.12 Let I' be a finite sequence of formulas and A a sequence of at most

one formula. Then
LIFT=A iff LIFXN\T=A

The next theorem shows the equivalence of LJ and LBo:

Theorem 4.13 LI = LB, ice., LI - AT = A iff LBy F ML = A, where A

consists of at most one formula.

Proof The direction <= is clear from Proposition 4.11 and the fact that LB is a
subsystem of LJ. For the other direction, we need to show that all of the inference rules
of LJ hold in LBs. We here check the cases of =L, =R, — L, and — R of LJ.

I'=s9p

1) - L: ——F—
(1) T

For this, it is enough to show that the following inference rule holds in LBo, where

v:=MTI:

T=
e ANy =

Using the additional axiom 1 of LBs, the proof goes like this:

V= =
PNy =@ P ANy =
B ZAN A A" AP =
AN
@ S

For this, it is enough to show that the following inference rule holds in LBy, where
~vi=/MNT:
PNy =
Y=

Using the additional axiom 4 of LBs, the proof goes like this:

pAY =
= (e A7)
7= 7= 2lp A7)
T=7A(p A7) YA AY) = —p
Y=
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= P, 1= A
o=, I = A

, where A consists of at most one formula.

(3) = L:
For this, it is enough to show that the following inference rule holds in LB3, where
v:=/MTI and 7:= /\II:

Y= VAT = A
(p—=V)AyAT= A

Using the additional axiom 3 of LBs, the proof goes like this:
Y= poY=p—9
(p—=P)Ay=9 (p=YP)AY=>p—0

(p—=PAy=eA(p—=1) oA (p—=9P)=1

(p—= V) Ay =1 =T
(p—=V)AyAT =1 (e =P AyAT=>T
(p=Y)AyAT =Y AT YAT= A

(=) AyAT=A

=
4) >R 2 ¥
I'=sp—vy
For this, it is enough to show that the following inference rule holds in LBo, where
v:=/MT:
pAY =Y
Y= =

Using the additional axiom 5 of LBs, the proof goes like this:

pANYy=1
= (pAy) =
= 1= (pAy) =9
Y= A (A7) =) YA AY) =) = — 1
Y=Y

4.6 Algebraic models of LB'p

We now consider algebraic models of the propositional part of LB’, which will be
denoted by LB'p.

Definition 4.3 An algebra A = (A, —,A,V,—,0,1) is called an LB’p-algebra when the
following conditions are satisfied:

1. (A,A,V,0,1) is a lattice with a bottom element 0 and a top element 1.
2. - is a unary operation satisfying the two conditions: for each a € A,

49



(1) ma=1ifa=0
(2) a=0ifa=1

3. — is a binary operation satisfying the two conditions: for each a,b,c € A,
(1) a=b=1ifa<bd

(2) a—=b<cifa=1landb<c

Proposition 4.14 In an LB'p-algebra A = (A, -, \,V,—,0,1), the following hold : for
each a,b,c € A,

l—-a<a
a—1=1
0—a=1

(anb)V(anc)<aA(bVec)
aV((bnNec)<(aVb)A(aVec)
aNb<aA(—aVb)
aV(manb)<aVb

NS Gtk W

4.6.1 The Lindenbaum algebra of LB'p

We here consider the Lindenbaum algebra of LB'p.

Definition 4.4 Using LB’p, we define an algebraic system as follows, where F, is the
set of all the wifs of LB'p and ¢, ¢ € FJ, :

1. o= & (Fe=1 and Fv¢ = )

2. |pl={YeFL|p=9}

3. Frje = {lol | ¢ € F1}

def,

4 |pl <l o=
Proposition 4.15 The algebra (Fr/=,<) defined by the previous definition has the fol-
lowing properties :

1. The relation = is an equivalence relation and the relation < on Fr,/= is well-

defined.
2. (Fp/=,<) is a poset with a bottom element 0 and a top element 1.

3. For each |p|, Y| € FL/=, there exist sup{|g|, ||} and inf{|p|,|v|}. Set

[l AL = inf{p] [0} and el V9] = sup{|e], [¢[}

Then we have

[Pl ATPl =l Al and o] V[Y] = |p V|
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Thus, (Fr./=,N\,V) is a lattice.
4. The lattice (F1,/=,\,V) has a bottom 0 and a top 1 .
5. Foranyp € Fr, (1) |-¢|=1,if |p|=0
(2) |=el =0, if [ =1
6. For any ¢,v,x € Fr, (1) [p =4[ =1, if |p] < [¢|
@) le =Dl <Ixl, & el =1and || <|x]

Thus, by defining = and — on Fr,/= by

“lel =1l and o] = [P] = |y — ¢,

we have an LB'p-algebra (Fr/=,—,A\,V,—,0,1).

4.6.2 Algebraic Models of LB'p

We are now ready to define algebraic models of LB'p.
Definition 4.5 M = (M, v) is called an LB’p-model if it satisfies the following condi-
tions:

1. M is an LB’p-algebra (M, —,A,V,—,0,1).

2. w is a valuation mapping: v =V — M, where V is the set of all atomic wffs of
LB'p.

3. For each wif ¢ of LB’p, [¢]¥ indicates the truth value of ¢ in (M,v). The truth
value of each wif ¢ of LB’p is defined inductively as follows:

(1) [p]M = v(p), where p is an arbitrary atomic wff
2) [l =[]}

3) leAvl" = [el" ALl

4) le Vol =l v [l

5) lp — vl" = [l — [l

4. A wif ¢ is said to be true in M = (M, v), if [p]¥ =1

5. A wif ¢ is said to be M-valid in an LB’p-model M, if [p]M = 1 for each v of
M = (M,v).

6. A wif ¢ is said to be valid, if ¢ is M-valid in every LB’p-model M.
7. Sequents of LB’p are algebraically interpreted as follows:

1if el <R

0 otherwise

@) [ =9 =
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1 if WM=1

2 [ =9k = ’

0 otherwise

! 0 otherwise

(4) [[9017"‘ yPm = P, 71/’11]]5/[ = [[801A"'/\30m=>¢1V"'V¢nW

(5) The truth, M-validity and validity of a sequent are defined as in the case of a wif.
When sequent I' = A is valid, we write as =T' = A.

We now have the soundness theorem of LB’p with respect to LB'p-models, the proof
of which is routine:
Theorem 4.16 For each sequent I' = A of LB'p, we have
FI=A = EIT'=A

We also have the completeness theorem of LB’p with respect to LB’p-models, the
proof of which is similar to the case of DI'p:
Theorem 4.17 For each sequent T' = A of LB'p, we have
El=A =FI'=A

5 Lattice Logic LL

We now consider a formal system of sequent calculus representing complete lattice.
We will call the system LL.

Each sequent of LL is so restricted that it contains exactly one formula in both the
antecedent and the succedent. The language of LL contains propositional constants T
(Truth or Verum) and L (Falsity or Falsum) but it does not contain the logical symbol

- or —.

5.1 System LL
(1) Axioms : ¢ = o, =T, L=9
(2) Inference Rules :

Structural Rule :

=19 PY=x
o =X

Cut :

Logical Rules :
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» =X =% v=x

AL ————— AR :
OAY =X =Y Ax
Y =X
Ny =X
VL : PN V=X \/Rzigpiw
eV =x p=1YVX
Y=X
p=PVXx
. o=y gL _P= )
Vaep(z) =1 © = Vay(x)
t is any term a is a free variable not
occurring in the lower sequent
gy 0
Jzp(x) = ¢ v = Jx(x)
a is a free variable not t is any term

occurring in the lower sequent

Note that in LL, there are no sequents like 7 = ¢”, "p= ", or” = 7 for any
®.

5.2 Algebraic models of LL

We now define algebraic models M = (M, D) of LL.

Definition 5.1 An algebraic model M of LL is a pair (M, D) satisfying the following
conditions:

1. M= {(M,NV,\,V,0,1) is a complete lattice.

2. In order to define the truth value of a wif of the language L of LL, we need to

define a valuation function
v:Ty — D (D is a nonempty set and T := T U{d |d € D} ),

where T7, is the set of all terms of the language L. d € {d | d € D} is a new indi-
vidual constant for d € D. Thus, when we consider models of LL, the language L
is to be extended by adding new individual constants {d | d € D}. v satisfies the
two conditions:

(1) for each t € Ty, v(t) € D

(2) for each d € D, v(d):=d
3. For each wif ¢ of the extended language, its truth value @] for M and v is
defined as follows:

M

(1) for each n-ary predicate symbol p, p™ is a function p™ : D® — M and for

53



each atomic wif p(ty,--- ,ty),

[[p(tlv T ’tn)]]{)w = pM(v(tl)v T 7U(tn))

2) [e A = [l A ]!
3) [e Vol = lel' v [W])!
4) Vep(@)" = Agep [p(d)]2!
(5) [Bre(@)" = Vaep [p(d)]2!

For each model M = (M, D) and valuation function v, the truth values of the
propositional constants T and L are set as follows:

[TIM:=1 and [L]M:=
4. We also define the truth value of a sequent ¢ = 9 as follows:

1 if [eld" < [ol3f

[ = v = ,
0 otherwise

5. The M-validity and validity of a sequent ¢ = 1 is defined as follows:
(1) ¢ = 1 is M-valid, M = ¢ = 1, if [o = ]2 =1 for each v.
(2) o=y isvalid, F ¢ = 1, if M = ¢ = 1 holds for each M.

Using the definition of a model for LL, we can show the soundness theorem for LL,
the proof of which is routine:

Theorem 5.1 Let ¢ and ¢ be wffs of the language L of LL. Then we have

Fo=1Y = Fe=>19
We now define the Lindenbaum algebra of LL.

Definition 5.2 Let ¢ and ¢ be wifs of the language L of LL. Then set
1. o= L (Fe=1% and Fv = y)

lp| == {¢Y € Fr | ¢ =1}, where Fy, is the set of all wifs of L.

Fr/= = {lel | ¢ € FL}

def
R

= W N

We can easily show:

Proposition 5.2 Of the above definition, the following hold :
1. The relation = on the wffs in Fr, is an equivalence relation.
The relation < on Fr,/= is well-defined.
(Fr/=,<) is a partially ordered set.
For each p,¢ € Fr, inf{|g|, [¢|} and sup{|pl|, ||} exist and

- W N
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inf{[p|, [} = [ A] and sup{|p|, L]} = |p V]

Then we set |@| A || := inf{lgl, [¢[} and |@| V|| := sup{|e], |1[}.
5. (Fr/=,<) is a lattice with a bottom 0 and a top 1 and

|L|=0 and |T|=1
We also have

Vzo(@)| = Nier, le(@)] and  [Brp()] = Vier, [0 ()]

By the above proposition, we can call the algebra Ff/= = (F/=,A,V,0,1) the Lin-
denbaum algebra of LL. Then we can prove the completeness theorem for LL:

Theorem 5.3 Let ¢ and ¢ be wffs of the language L of LL. Then we have

Fe=>9 —=Fp=>1

Proof Suppose / ¢ = ¢. We need to show that the sequent ¢ = 9 is not valid.
From the Lindenbaum algebra of LL, Fr/= = (F1./=,/A\,V,0,1), we have |¢| £ [¢|. Let
(F/=)PM be the Dedekind-MacNeille completion of Fy /= | i.e.,

(FL/=)PM = {AC Fr/= | A" = A},
where for each B C Fp /=,
B := {JZEFL/; ‘VbEB(bSI)} and B':= {xeFL/E |Vb€B(x§b)}

It is well-known that (Fr/=)PM = ((Fp/=)PM, <), where the order < is the set
inclusion C, is a complete lattice and the mapping h

h:Fp/= — (Fp/=)PM™ defined by z +— |z (z € F1/=),

where |z := {a € F1/= | a < x}, is an order-embedding preserving all (finite or infinite)
meets and joins. We now define an algebraic model M = ((Fy,/=)PM D) and a valuation
function v as follows:

1. D:=Tp and Ty =T, UD =T},

2. v:Typ — D is defined by v(t) =t for each t € Ty = D

3. For each atomic wif P(t1,--- ,t,) € FJ, its truth value is defined by
[Pty )] = B(P(t, -+ ta)]) = LIP(t1, - ta)| € (FLj=)PM

Now we can show easily

Lemma For each wif ¢ € Fr, [p]M = h(|¢|)

Since h is an order-embedding, we have, for each wif x and &,
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IXI <&l == R(Ix]) < n(l¢])

Thus we have h(|¢|) £ h(J1]). By the above lemma, we have [o]M £ [¢]M, which
gives us £ ¢ = 1. O
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